笔记¶
劝退指南:不是博客,而是笔记,甚至是草稿
写笔记是为了让自己看懂,写博客是为了让别人看懂,不一样的,认真做好后者对自己各方面能力的提升会非常大(比如表达能力),其实很多时候记笔记就是写几段自己能看懂的表达,很随性,但写博客更像是写一篇论文,需要自己先彻底搞明白一个东西后才能输出1
我一直努力将内容写成博客。但是后来发现,根本没有时间和心思,来为别人解释很多事情。我的想法是最多是解释给多年后忘记一切的自己听,我还能快速看懂。能达到这点,这些内容的意义对于我就已经足够。
从读者的角度,我并不会推荐任何人阅读这个网站的内容:因为你会遇到以下令人烦躁的场景
- 完整性差:某些笔记写着写着就没有了,内容是残缺的。甚至只有一个标题。(这是因为我没有时间填充内容,或者我的研究和注意力转变方向了,弃坑了弃坑了~)
- 可读性一般:很少有起承转合的解释语句,笔记的内容逻辑几乎全部靠
多级标题维持. - 笔记间关联性低:从读者的角度是看不到本人是如何使用多级文件夹,来组织划分笔记间的内容逻辑。如果你在搜索栏找不到你想要的关键词,那大概率我没接触到这方面的内容。
知识是自然聚类和融合的,但需要两级的文档来过滤内容和撰写正文。小而全、无懈可击的内容应该是所追求的
导致这种情况,其实和我对知识产出过程的理解有关,我认为过程是 知识是自然聚类和融合的:
- 接触到领域对象(新建文件夹)
- 阅读各种文献网站(零散的知识进行简单的聚类)
- 上手实践和研究(踩了许多坑,有或多或少的感悟)。
而且三者的占比是前面远大于后面,这样看来我这网站大部分的内容岂不是都是笔记的草稿。
我以这样的方式撰写我的正式的毕业论文时,发现这样的处理有利有弊:
- 优势:
- 速度?:能快速的罗列出内容,填充了大量垃圾内容
- 完备性:保留所有必要的相关信息,
- 劣势:
- 对工作进度的误判:罗列的大量页数迷惑了自己,以为进度很快。其实仔细思路内容的有效性、逻辑关联性。核心观点的提炼。遣词造句都极其耗费时间。
- 最重要是导致只看页数的领导对你工作速度的误判导致的嫌弃:一周前就看见里论文写了60页了,怎么两周了还没写完。或者你都60页了快结束了,来帮帮我弄这个~阿米诺斯~
- 需要返工:重新整理罗列的垃圾内容,至少需要三倍以上的时间才能整理好。
- 对工作进度的误判:罗列的大量页数迷惑了自己,以为进度很快。其实仔细思路内容的有效性、逻辑关联性。核心观点的提炼。遣词造句都极其耗费时间。
总结:知识是自然聚类和融合的思想是没错的,但是在实际生产应用时需要两级的信息筛选过滤体系:区分出正文内的todo内容和未整理的archived信息。通过将罗列的完备信息初步分类归档(有基础的逻辑)以待后续使用,正文精心撰写每一句话保证不需要大量返工。
Omni-Modal: AR vs DiT
导言
全模态大模型(Omnimodal Large Models, OLMs),以下简称Omni模型,有时也称之为“端到端多模态大模型”。 它主要解决的文本、图片、语音多模态理解与实时交互的协同问题(图片修改),最新的研究也会涉及统一推理和图像生成。
当前多模态设计中AR和DiT的组合关系,单独学习一下
Pytorch 7 :Memory Optimization(Freeing GPU/NPU Memory Early)
导言
- 对于不使用的python对象,如何释放?
- python 的对象管理机制
- del,empty_cache , gc_collect的原理
RL Algorithms: PPO-RLHF & GRPO-family
导言
- RLHF 利用复杂的反馈回路,结合人工评估和奖励模型来指导人工智能的学习过程。(RLHF = 人类偏好数据 + Reward Model + RL(如 PPO), 所以RLHF是RL的一种实践方式)
- 尽管DPO相对于PPO-RHLF更直接,但是(Reinforcement Learning from Verifiable Rewards (RLVR))往往效果更好;
- 而RLVR算法在 2025年的GRPO提出后,其变种和应用范围迎来了井喷爆发。
- 本文详细介绍 PPO、GRPO以及DAPO。
必看好文6
Bridging the Gap: Challenges and Trends in Multimodal RL.
导言
快速调研多模态强化学习及其ai infra(verl类似)的下一步方向、技术点和与LLM RL的差异点:
- 说实话有点头大
- 多模态理解模型的主体就是LLM,LLM的RL基本半年后会迁移到多模态理解上,所以我要跟踪LLM RL的文章
- 多模态生成模型的RL偏向DPO为主的另一条路子;
- 多模态还涉及agent、具身智能,RL又有些不同;
- 文章多到看得头大。
Pytorch 2.5 :Dataset & Dataloader
导言
- 数据集与数据加载器:学习如何使用torch.utils.data.Dataset和DataLoader来加载和处理数据。
- 数据预处理:介绍常用的数据预处理方法,如归一化、数据增强等。
